Variational and numerical analysis of a Q-tensor model for smectic-A liquid crystals

Jingmin Xia University of Oxford

Patrick E. Farrell, University of Oxford

MS66-3 SIAM Conference on Material Sciences 17-28 May, 2021

A recent smectic-A model (Xia et al., 2021)

Smectic order parameter $u : \Omega \to \mathbb{R}$. Nematic order parameter $Q : \Omega \to \mathbb{R}^{d \times d}$, symmetric and traceless.

A unified smectic-A free energy

$$\begin{aligned} \mathcal{J}(u, \mathbf{Q}) &= \int_{\Omega} \left(\frac{a_1}{2} u^2 + \frac{a_2}{3} u^3 + \frac{a_3}{4} u^4 \right. \\ &+ B \left| \mathcal{D}^2 u + q^2 \left(\mathbf{Q} + \frac{I_d}{d} \right) u \right|^2 + \frac{K}{2} |\nabla \mathbf{Q}|^2 + f_n^b(\mathbf{Q}) \right), \end{aligned} \tag{1}$$

where the nematic bulk term is defined as

$$f_n^b(Q) := \begin{cases} \left(-l\left(\operatorname{tr}(Q^2)\right) + l\left(\operatorname{tr}(Q^2)\right)^2\right), & \text{if } d = 2, \\ \left(-\frac{l}{2}\left(\operatorname{tr}(Q^2)\right) - \frac{l}{3}\left(\operatorname{tr}(Q^3)\right) + \frac{l}{2}\left(\operatorname{tr}(Q^2)\right)^2\right), & \text{if } d = 3. \end{cases}$$

 I_d is the $d \times d$ identity matrix, \mathcal{D}^2 denote the Hessian operator, $a_1, a_2, a_3, B, K, I, q$ are some known parameters.

Successful implementation examples

Oily Streaks

TFCD

See more details in

í .

J. Xia, S. MacLachlan, T. J. Atherton and P. E. Farrell, *Structural Landscapes in Geometrically Frustrated Smectics*, PRL, 2021.

Successful implementation examples

Oily Streaks

TFCD

See more details in

J. Xia, S. MacLachlan, T. J. Atherton and P. E. Farrell, *Structural Landscapes in Geometrically Frustrated Smectics*, PRL, 2021.

Our goal

To answer the following two questions:

- do minimisers exist?
- how do finite element approximations behave?

Section 1. Existence of minimisers

Existence of minimisers

Define the admissible set

$$\begin{split} \mathcal{A} &= \bigg\{ u \in H^2(\Omega, \mathbb{R}), \ \mathsf{Q} \in H^1(\Omega, S_0) : \\ & \mathsf{Q} = s\left(n \otimes n - \frac{l_d}{d}\right) \ \text{for some } s \in [0, 1] \text{ and } n \in H^1(\Omega, \mathcal{S}^{d-1}), \\ & \mathsf{Q} = \mathsf{Q}_b \text{ on } \partial\Omega \bigg\}, \end{split}$$

with Dirichlet boundary data $Q_b \in H^{1/2}(\partial\Omega, S_0)$.

Theorem

Let \mathcal{J} be of the form (1) with positive parameters a_3 , B, q, K, I. Then there exists a solution pair (u^*, Q^*) that minimises \mathcal{J} over the admissible set \mathcal{A} .

Proof: by the direct method of calculus of variations. (Davis and Gartland, 1998, Theorem 4.3) & (Bedford, 2014, Theorem 5.19)

Section 2. A priori error estimates

Essentially...

we are solving a *second order* PDE (for Q) and *fourth order* PDE (for u), coupled together.

- For the second order PDE \Leftarrow common continuous Lagrange elements \checkmark
- For the fourth order PDE \leftarrow a *practical* choice of finite elements?

Solution: use continuous Lagrange elements for u!

By adding the following penalty term (Engel et al., 2002; Brenner and Sung, 2005) in the total energy:

$$\sum_{e\in\mathcal{E}_l}\int_e \frac{B\epsilon}{h_e^3}\left(\llbracket\nabla u\rrbracket\right)^2.$$

For tensor-valued Q: a second order PDE

$$(\mathcal{P}1) \quad \begin{cases} -\mathcal{K}\Delta \mathsf{Q} + 2I\left(2|\mathsf{Q}|^2 - 1\right)\mathsf{Q} = 0 & \text{ in } \Omega \subset \mathbb{R}^2, \\ \mathsf{Q} = \mathsf{Q}_b & \text{ on } \partial\Omega. \end{cases}$$

For real-valued u: a fourth order PDE

$$(\mathcal{P}2) \begin{cases} 2B\nabla \cdot (\nabla \cdot \mathcal{D}^2 u) + a_1 u + a_3 u^3 = 0 & \text{in } \Omega, \\ u = u_b & \text{on } \partial\Omega, \\ \mathcal{D}^2 u = \mathcal{D}^2 u_b & \text{on } \partial\Omega. \end{cases}$$

Here, we take $a_2 = 0$ to only analyse the cubic nonlinearity for simplicity.

(Davis and Gartland, 1998, Theorem 6.3) (Regularity)

Let Ω be an open, bounded, Lipschitz and convex domain. If the Dirichlet data $Q_b \in H^{1/2}(\partial\Omega, S_0)$, then any solution of $(\mathcal{P}1)$ belongs to $H^2(\Omega, S_0)$.

(Davis and Gartland, 1998, Theorem 7.3)(H^1 error estimate) If $Q \in H^2 \cap H_b^1(\Omega, S_0)$ and $Q_h \in V_h$ (consisting of piecewise linear polynomials) represents an approximated solution to Q, it holds that $\|Q - Q_h\|_1 \lesssim h \|Q\|_2$.

Theorem (L^2 error estimate)

Let Q be a regular solution of the nonlinear weak form for ($\mathcal{P}1$) and $Q_h \in V_h$ is an approximated solution to Q, there holds that $\|Q - Q_h\|_0 \lesssim h^2 \left(2 + \left(3 + 2h + 2h^2\right) \|Q\|_2^2\right) \|Q\|_2.$

To derive L^2 error estimates for Q

Given $G \in L^2$, consider the linear dual problem to the primary problem ($\mathcal{P}1$): find $N \in H_0^1$ such that

$$\begin{cases} -K\Delta N + 4/|Q|^2 N + 8/(Q:N)Q - 2/N = G & \text{in } \Omega, \\ N = 0 & \text{on } \partial\Omega. \end{cases}$$
(2)

Weak formulation of (2): find $N \in H_0^1$ such that

 $\langle \mathcal{DN}^{n}(\mathsf{Q})\mathsf{N},\Phi\rangle \coloneqq A^{n}(\mathsf{N},\Phi) + 3B^{n}(\mathsf{Q},\mathsf{Q},\mathsf{N},\Phi) + C^{n}(\mathsf{N},\Phi) = (\mathsf{G},\Phi)_{0} \quad (3)$

for all $\Phi \in H_0^1$.

To derive L^2 error estimates for Q

Given $G \in L^2$, consider the linear dual problem to the primary problem ($\mathcal{P}1$): find $N \in H_0^1$ such that

$$\begin{cases} -K\Delta N + 4/|Q|^2 N + 8/(Q:N)Q - 2/N = G & \text{in } \Omega, \\ N = 0 & \text{on } \partial\Omega. \end{cases}$$
(2)

Weak formulation of (2): find $N \in H_0^1$ such that

$$\langle \mathcal{DN}^{n}(\mathbf{Q})\mathbf{N},\Phi\rangle \coloneqq A^{n}(\mathbf{N},\Phi) + 3B^{n}(\mathbf{Q},\mathbf{Q},\mathbf{N},\Phi) + C^{n}(\mathbf{N},\Phi) = (\mathbf{G},\Phi)_{0} \quad (3)$$

for all $\Phi \in H_0^1$.

Weak formulation of $(\mathcal{P}1) \implies$ find $Q \in H_b^1$ such that

$$\mathcal{N}^{n}(\mathsf{Q})\mathsf{P} \coloneqq A^{n}(\mathsf{Q},\mathsf{P}) + B^{n}(\mathsf{Q},\mathsf{Q},\mathsf{Q},\mathsf{P}) + C^{n}(\mathsf{Q},\mathsf{P}) = 0$$

for all $\mathsf{P}\in\mathsf{H}^1_0,$ where the bilinear forms are

$$A^n(\mathsf{Q},\mathsf{P}) \coloneqq \mathcal{K} \int_{\Omega} \nabla \mathsf{Q} : \nabla \mathsf{P}, \ C^n(\mathsf{Q},\mathsf{P}) \coloneqq -2I \int_{\Omega} \mathsf{Q} : \mathsf{P},$$

and the nonlinear operator is given by

$$B^{n}(\Psi,\Phi,\Theta,\Xi) \coloneqq \frac{4l}{3} \int_{\Omega} \left((\Psi:\Phi)(\Theta:\Xi) + 2(\Psi:\Theta)(\Phi:\Xi) \right).$$

Sketch proof of the L^2 -error rates for Q

Lemma

For $Q \in H^2 \cap H^1_b$, $N \in H^2 \cap H^1_0$ and $I_h Q \in V_h \subset H^1_b$, it holds that

$$A^n(I_h\mathsf{Q}-\mathsf{Q},\mathsf{N})\lesssim h^2\|\mathsf{Q}\|_2\|\mathsf{N}\|_2.$$

Lemma

The solution N to the weak form (3) of the dual linear problem belongs to $H^2\cap H^1_0$ and it holds that $\|N\|_2\lesssim \|G\|_0.$

A standard technique in the Aubin–Nitsche argument:

taking $G = I_h Q - Q_h$ and the test function $\Phi = I_h Q - Q_h$ in the weak dual form (3).

- Optimal rates in the H^1 norm. \checkmark
- Optimal rates in the L^2 norm. \checkmark

Remark: it also holds for higher order (> 1) approximations by following similar steps in (Maity, Majumdar, and Nataraj, 2020).

Now, consider problem ($\mathcal{P}2$) for u

Continuous weak form of $(\mathcal{P}2) \implies \text{find } u \in H^2(\Omega) \cap H^1_b(\Omega) \text{ s.t.}$ $\mathcal{N}^s(u)v \coloneqq A^s(u,v) + B^s(u,u,u,v) + C^s(u,v) = L^s(v) \quad \forall v \in H^2 \cap H^1_0,$ (4)

where for $v, w \in H^2(\Omega)$,

$$A^{s}(v,w) = 2B \int_{\Omega} \mathcal{D}^{2}v \colon \mathcal{D}^{2}w, \ C^{s}(v,w) = a_{1} \int_{\Omega} vw,$$
$$L^{s}(v) \coloneqq 2B \int_{\partial\Omega} (\mathcal{D}^{2}u_{b} \cdot \nabla v) \cdot \nu,$$

and for $\mu, \zeta, \eta, \xi \in H^2(\Omega)$,

$$B^{s}(\mu,\zeta,\eta,\xi) = a_{3}\int_{\Omega}\mu\zeta\eta\xi.$$

Newton linearisation \implies find $v \in H^2 \cap H^1_0$ such that

 $\langle \mathcal{DN}^{s}(u)v, w \rangle_{H^{2}} \coloneqq A^{s}(v, w) + 3B^{s}(u, u, v, w) + C^{s}(v, w) = L^{s}(w)$ for all $w \in H^{2} \cap H^{1}_{0}$.

Finite element discretisation for u

- C^0 interior penalty methods (Brenner, 2011).
- We take the H²-nonconforming but still continuous approximation *u_h* ∈ W_{h,b} ⊂ H²(T_h) ∩ H¹_b(Ω) for the solution *u* of the continuous weak form (4).

Here,

 $W_{h,b} \coloneqq \{ v \in H^2(\mathcal{T}_h) \cap H^1(\Omega) : v = u_b \text{ on } \partial\Omega, v \in \mathbb{Q}_{deg}(\mathcal{T}) \ \forall \mathcal{T} \in \mathcal{T}_h \}.$

• Denote the mesh-dependent H^2 -like semi-norm for $v \in W_h$

$$|||v|||_{h}^{2} := \sum_{T \in \mathcal{T}_{h}} |v|_{H^{2}(T)}^{2} + \sum_{e \in \mathcal{E}_{I}} \int_{e} \frac{1}{h_{e}^{3}} |[\nabla v]|^{2}$$

Here, $\llbracket \nabla w \rrbracket = (\nabla w)_{-} \cdot \nu_{-} + (\nabla w)_{+} \cdot \nu_{+}$. Note that $\Vert \cdot \Vert_{h}$ is indeed a norm on $W_{h,0}$.

Discrete weak form of u

Find $u_h \in W_{h,b}$ such that

$$\mathcal{N}_h^s(u_h)v_h \coloneqq \mathcal{A}_h^s(u_h, v_h) + \mathcal{P}_h^s(u_h, v_h) + \mathcal{B}^s(u_h, u_h, u_h, v_h) + \mathcal{C}^s(u_h, v_h)$$
$$= \mathcal{L}^s(u_h) \quad \forall v_h \in W_{h,0},$$

where for all $u, v \in W_h$,

$$A_{h}^{s}(u,v) := 2B\left(\sum_{T\in\mathcal{T}_{h}}\int_{T}\mathcal{D}^{2}u:\mathcal{D}^{2}v - \sum_{e\in\mathcal{E}_{l}}\int_{e}\left\{\left\{\frac{\partial^{2}u}{\partial\nu^{2}}\right\}\right\}\left[\!\left[\nabla v\right]\!\right] - \sum_{e\in\mathcal{E}_{l}}\int_{e}\left\{\left\{\frac{\partial^{2}v}{\partial\nu^{2}}\right\}\right\}\left[\!\left[\nabla u\right]\!\right]\right\},$$

and

$$P_h^s(u,v) \coloneqq \sum_{e \in \mathcal{E}_I} \frac{2B\epsilon}{h_e^3} \int_e \llbracket \nabla u \rrbracket \llbracket \nabla v \rrbracket.$$

Here, ϵ is the penalty parameter, $\left\{ \left\{ \frac{\partial^2 u}{\partial \nu^2} \right\} \right\} = \frac{1}{2} \left(\left. \frac{\partial^2 u_+}{\partial \nu^2} \right|_e + \left. \frac{\partial^2 u_-}{\partial \nu^2} \right|_e \right)$. Linearisation \implies Seek $v_h \in W_{h,0}$ such that

$$\langle \mathcal{DN}_h^s(u_h)v_h, w_h \rangle = L^s(w_h) \quad \forall w_h \in W_{h,0},$$

where $\langle \mathcal{DN}_h^s(u_h)v_h, w_h \rangle \coloneqq A_h^s(v_h, w_h) + P_h^s(v_h, w_h) + 3B_h^s(u_h, u_h, v_h, w_h) + C_h^s(v_h, w_h).$

(5)

Brouwer's fixed point theorem \implies the existence and local uniqueness result of the discrete solution u_h .

Theorem

Let u be a regular isolated solution of the nonlinear problem (4). For a sufficiently large ϵ and a sufficiently small h, there exists a unique solution u_h of the discrete nonlinear problem (5) within the local ball $\mathcal{B}_{R(h)}(I_h u) := \{v_h \in W_h : |||I_h u - v_h|||_h \le R(h)\}$. Furthermore, we have

$$\left\|\left\|u-u_{h}\right\|\right\|_{h} \lesssim h^{\min\{\deg -1, \Bbbk_{u}-2\}}$$

Here, $R(h) = O(h^{\min\{\deg -1, \Bbbk_u - 2\}})$, deg indicates the degree of the approximating polynomials and $\Bbbk_u \ge 3$ represents the regularity of u.

 \implies optimal rates in the $\|\cdot\|_{h}$ -norm. \checkmark

Auxiliary results for $\|\cdot\|_{h}$ -error estimates

• We define the nonlinear map $\mu_h : W_h \to W_h$ by $\langle \mathcal{DN}_h^s(I_h u) \mu_h(v_h), w_h \rangle = 3B_h^s(I_h u, I_h u, v_h, w_h) + L^s(w_h) - B_h^s(v_h, v_h, v_h, w_h).$

Lemma (mapping from a ball to itself)

Let u be a regular isolated solution of the continuous nonlinear weak problem (4). For a sufficiently large ϵ and a sufficiently small mesh size h, there exists a positive constant $R(h) = \mathcal{O}(h^{\min\{\deg -1, \Bbbk_u - 2\}})$ such that:

 $|||v_h - I_h u|||_h \leq R(h) \Rightarrow |||\mu_h(v_h) - I_h u|||_h \leq R(h) \quad \forall v_h \in W_{h,0}.$

Lemma (contraction result)

For a sufficiently large ϵ , a sufficiently small mesh size h and any $v_1, v_2 \in \mathcal{B}_{R(h)}(I_h u)$, there holds $\|\|\mu_h(v_1) - \mu_h(v_2)\|\|_h \lesssim h^{\min\{\deg - 1, \Bbbk_u - 2\}} \|\|v_1 - v_2\|\|_h.$

To derive L^2 error estimates

We consider the linear dual problem to the primary nonlinear problem $(\mathcal{P}2)$:

$$\begin{cases} 2B\nabla \cdot (\nabla \cdot (\mathcal{D}^2 \chi)) + a_1 \chi + 3a_3 u^2 \chi = f_{dual} & \text{in } \Omega, \\ \chi = 0, \quad \mathcal{D}^2 \chi = 0 & \text{on } \partial \Omega, \end{cases}$$

for $f_{dual} \in L^2$.

Weak form: find $\chi \in H^2 \cap H^1_0$ such that

$$\langle \mathcal{DN}^{s}(u)\chi,v
angle_{H^{2}}=\langle \mathcal{DN}^{s}_{h}(u)\chi,v
angle=(f_{dual},v)_{0},$$

for any $v \in H^2 \cap H^1_0$.

Using the standard Aubin–Nitsche technique: take $f_{dual} = I_h u - u_h$ and $v = I_h u - u_h$ in the above weak form.

Theorem

Under the same conditions as in the theorem of the $||| \cdot |||_h$ -error rates, the discrete solution u_h approximates u such that

$$\|u - u_h\|_0 \lesssim egin{cases} h^{\min\{\deg + 1, \Bbbk_u\}} & ext{for } \deg \geq 3, \ h^{2\min\{\deg - 1, \Bbbk_u - 2\}} = h^2 & ext{for } \deg = 2. \end{cases}$$

 \implies optimal L^2 error rates (only suboptimal for quadratic approximations) for polynomials with degree (\geq 3). \checkmark

Remark: suboptimal rates with quadratic approximations are also observed for biharmonic equations (Süli and Mozolevski, 2007).

Section 3. Numerical verifications

Convergence tests via MMS

• Exact solutions:

$$Q_{11}^{e} = \left(\cos\left(\frac{\pi(2y-1)(2x-1)}{8}\right)\right)^{2} - \frac{1}{2},$$

$$Q_{12}^{e} = \cos\left(\frac{\pi(2y-1)(2x-1)}{8}\right)\sin\left(\frac{\pi(2y-1)(2x-1)}{8}\right),$$

$$u^{e} = 10\left((x-1)x(y-1)y\right)^{3}.$$

Manufactured equations to be solved:

$$\begin{cases} 4Bq^4u^2Q_{11} + 2Bq^2u\left(\partial_x^2u - \partial_y^2u\right) - 2K\Delta Q_{11} - 4/Q_{11} + 16/Q_{11}\left(Q_{11}^2 + Q_{12}^2\right) = f_1, \\ 4Bq^4u^2Q_{12} + 4Bq^2u\left(\partial_x\partial_yu\right) - 2K\Delta Q_{12} - 4/Q_{12} + 16/Q_{12}\left(Q_{11}^2 + Q_{12}^2\right) = f_2, \\ a_1u + a_2u^2 + a_3u^3 + 2B\nabla\cdot\left(\nabla\cdot\left(\mathcal{D}^2u\right)\right) + Bq^4\left(4\left(Q_{11}^2 + Q_{12}^2\right) + 1\right)u + 2Bq^2(t_1 + t_2) = f_3, \end{cases}$$

with

$$\begin{split} t_1 &:= (Q_{11} + 1/2) \partial_x^2 u + (-Q_{11} + 1/2) \partial_y^2 u + Q_{12} \partial_x \partial_y u, \\ t_2 &:= \partial_x^2 (u(Q_{11} + 1/2)) + \partial_y^2 (u(-Q_{11} + 1/2)) + 2 \partial_x \partial_y (uQ_{12}). \end{split}$$

Here, f_1, f_2, f_3 are source terms derived from substituting the exact solutions to the left hand sides.

- $\Omega = [0, 1] \times [0, 1].$
- Mesh size $h = \frac{1}{N}$ with N = 6, 12, 24, 48.
- Define numerical errors in L^2 and H^1 norms as

$$\begin{split} \|\mathbf{e}_{u}\|_{0} &= \|u^{e} - u_{h}\|_{0}, \ \|\mathbf{e}_{u}\|_{1} = \|u^{e} - u_{h}\|_{1}, \ \|\|\mathbf{e}_{u}\|\|_{h} = \|\|u^{e} - u_{h}\|\|_{h}, \\ \|\mathbf{e}_{Q}\|_{0} &= \|(Q_{11}^{e}, Q_{12}^{e}) - (Q_{11,h}, Q_{12,h})\|_{0}, \\ \|\mathbf{e}_{Q}\|_{1} &= \|(Q_{11}^{e}, Q_{12}^{e}) - (Q_{11,h}, Q_{12,h})\|_{1}. \end{split}$$

• Choose parameters: $a_1 = -10$, $a_2 = 0$, $a_3 = 10$, $B = 10^{-5}$, K = 0.3 and I = 30.

Approximating tensor Q:

	$N = \frac{1}{h}$	$\ \mathbf{e}_Q\ _0$	rate	$\ \mathbf{e}_{Q}\ _1$	rate
	6	8.12e-04	_	3.78e-02	_
	12	2.02e-04	2.01	1.88e-02	1.01
$[\mathbb{Q}_1]^2$	24	5.05e-05	2.00	9.39e-03	1.00
	48	1.26e-05	2.00	4.69e-03	1.00
	6	2.92e-05	_	1.11e-03	-
	12	3.90e-06	2.90	2.71e-04	2.04
$[Q_2]^2$	24	5.02e-07	2.96	6.72e-05	2.01
	48	6.36e-08	2.99	1.68e-05	2.00
	6	3.02e-07	_	2.25e-05	_
	12	2.17e-08	3.80	2.72e-06	3.05
$[\mathbb{Q}_3]^2$	24	1.45e-09	3.90	3.34e-07	3.03
	48	9.33e-11	3.96	4.13e-08	3.01

 \implies optimal rates in the H^1 and L^2 norms. \checkmark

Convergence rates for q = 0

Approximating u with $\epsilon = 1$:

	$N = \frac{1}{h}$	$\ \mathbf{e}_u\ _0$	rate	$\ \mathbf{e}_u\ _1$	rate	$\ \mathbf{e}_u\ _h$	rate
\mathbb{Q}_2	6	1.17e-05	_	3.46e-04	_	1.36e-02	_
	12	2.60e-06	2.17	9.81e-05	1.82	7.25e-03	0.91
	24	6.37e-07	2.03	2.54e-05	1.95	3.54e-03	1.03
	48	1.82e-07	1.80	6.88e-06	1.88	1.76e-03	1.01
\mathbb{Q}_3	6	4.73e-06	-	1.32e-04	_	4.98e-03	_
	12	3.32e-07	3.83	1.41e-05	3.23	9.96e-04	2.32
	24	2.12e-08	3.97	1.63e-06	3.12	2.46e-04	2.02
	48	1.32e-09	4.00	1.99e-07	3.03	6.14e-05	2.00
Q4	6	2.01e-07	_	7.76e-06	_	3.94e-04	_
	12	5.40e-09	5.22	4.30e-07	4.17	4.88e-05	3.01
	24	1.68e-10	5.00	2.68e-08	4.00	6.11e-06	2.99
	48	5.27e-12	4.99	1.68e-09	3.99	7.64e-07	3.00

 \implies optimal rates in the $\|\cdot\|_h$, $\|\cdot\|_1$ and $\|\cdot\|_0$ norms (only suboptimal in the $\|\cdot\|_0$ norm with quadratic approximations). \checkmark

Convergence rates for q = 30

Approximating tensor Q (fixing the approximation \mathbb{Q}_3 for u with $\epsilon = 5 \times 10^4$):

	$N = \frac{1}{h}$	$\ \boldsymbol{e}_Q\ _0$	rate	$\ \boldsymbol{e}_{Q}\ _1$	rate
$[\mathbb{Q}_1]^2$	6	8.12e-04	_	3.78e-02	-
	12	2.02e-04	2.01	1.88e-02	1.01
	24	5.05e-05	2.00	9.39e-03	1.00
	48	1.26e-05	2.00	4.69e-03	1.00
$[\mathbb{Q}_2]^2$	6	2.92e-05	_	1.11e-03	_
	12	3.90e-06	2.90	2.71e-04	2.04
	24	5.02e-07	2.96	6.72e-05	2.01
	48	6.37e-08	2.98	1.68e-05	2.00
$[\mathbb{Q}_3]^2$	6	3.02e-07	_	2.25e-05	_
	12	2.17e-08	3.80	2.72e-06	3.05
	24	1.45e-09	3.90	3.34e-07	3.03
	48	9.32e-11	3.96	4.13e-08	3.01

 \implies optimal rates in the H^1 and L^2 norms. \checkmark

		-			-		-
	$N = \frac{1}{h}$	$\ \mathbf{e}_u\ _0$	rate	$\ \mathbf{e}_u\ _1$	rate	$\ \mathbf{e}_u\ _h$	rate
\mathbb{Q}_2	6	1.21e-05	_	3.59e-04	_	1.37e-02	_
	12	3.98e-06	1.61	1.42e-04	1.34	8.30e-03	0.72
	24	1.57e-06	1.35	4.99e-05	1.51	3.89e-03	1.09
	48	2.58e-07	2.60	9.07e-06	2.46	1.78e-03	1.13
Q ₃	6	7.36e-06	-	2.25e-04	-	9.10e-03	_
	12	4.13e-07	4.16	1.86e-05	3.60	1.11e-03	3.03
	24	4.23e-08	3.29	2.24e-06	3.05	2.53e-04	2.14
	48	3.01e-09	3.81	2.28e-07	3.29	6.15e-05	2.04

Approximating u with $\epsilon = 5 \times 10^4$ (fixing the approximation $[\mathbb{Q}_2]^2$ for Q):

 \implies almost optimal (with some fluctuations) in the $\|\cdot\|_h$ and $\|\cdot\|_0$ norms (almost suboptimal in the L^2 -norm for quadratic approximations).

Section 4. Conclusions and future work

Conclusions

- Existence of minimisers is proven for the proposed smectic-A model in (Xia et al., 2021).
- A priori error estimates are illustrated for the decoupled case.
- Numerical tests verify the analysed error estimates.

Conclusions

- Existence of minimisers is proven for the proposed smectic-A model in (Xia et al., 2021).
- A priori error estimates are illustrated for the decoupled case.
- Numerical tests verify the analysed error estimates.

Future work

- Design fast solvers for the model.
- Apply to other smectic scenarios.

Conclusions

- Existence of minimisers is proven for the proposed smectic-A model in (Xia et al., 2021).
- A priori error estimates are illustrated for the decoupled case.
- Numerical tests verify the analysed error estimates.

Future work

- Design fast solvers for the model.
- Apply to other smectic scenarios.

Thank you for your attention!