Variational and numerical analysis of a Q-tensor model for smectic-A liquid crystals

Jingmin Xia University of Oxford

Patrick E. Farrell, University of Oxford

MS66-3
SIAM Conference on Material Sciences 17-28 May, 2021

A recent smectic-A model (Xia et al., 2021)

Smectic order parameter $u: \Omega \rightarrow \mathbb{R}$.
Nematic order parameter $\mathrm{Q}: \Omega \rightarrow \mathbb{R}^{d \times d}$, symmetric and traceless.
A unified smectic-A free energy

$$
\begin{align*}
\mathcal{J}(u, \mathrm{Q}) & =\int_{\Omega}\left(\frac{a_{1}}{2} u^{2}+\frac{a_{2}}{3} u^{3}+\frac{a_{3}}{4} u^{4}\right. \\
& \left.+B\left|\mathcal{D}^{2} u+q^{2}\left(\mathrm{Q}+\frac{I_{d}}{d}\right) u\right|^{2}+\frac{K}{2}|\nabla \mathrm{Q}|^{2}+f_{n}^{b}(\mathrm{Q})\right), \tag{1}
\end{align*}
$$

where the nematic bulk term is defined as

$$
f_{n}^{b}(Q):= \begin{cases}\left(-1\left(\operatorname{tr}\left(Q^{2}\right)\right)+1\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}\right), & \text { if } d=2 \\ \left(-\frac{1}{2}\left(\operatorname{tr}\left(Q^{2}\right)\right)-\frac{1}{3}\left(\operatorname{tr}\left(Q^{3}\right)\right)+\frac{1}{2}\left(\operatorname{tr}\left(Q^{2}\right)\right)^{2}\right), & \text { if } d=3\end{cases}
$$

I_{d} is the $d \times d$ identity matrix, \mathcal{D}^{2} denote the Hessian operator, $a_{1}, a_{2}, a_{3}, B, K, l, q$ are some known parameters.

Successful implementation examples

Oily Streaks

TFCD

See more details in
J. Xia, S. MacLachlan, T. J. Atherton and P. E. Farrell, Structural Landscapes in Geometrically Frustrated Smectics, PRL, 2021.

Successful implementation examples

Oily Streaks

TFCD

See more details in

J. Xia, S. MacLachlan, T. J. Atherton and P. E. Farrell, Structural Landscapes in Geometrically Frustrated Smectics, PRL, 2021.

Our goal

To answer the following two questions:

- do minimisers exist?
- how do finite element approximations behave?

Section 1. Existence of minimisers

Existence of minimisers

Define the admissible set

$$
\begin{aligned}
& \mathcal{A}=\left\{u \in H^{2}(\Omega, \mathbb{R}), \mathrm{Q} \in H^{1}\left(\Omega, S_{0}\right):\right. \\
& \mathrm{Q}=s\left(n \otimes n-\frac{I_{d}}{d}\right) \text { for some } s \in[0,1] \text { and } n \in H^{1}\left(\Omega, \mathcal{S}^{d-1}\right), \\
&\left.\mathrm{Q}=\mathrm{Q}_{b} \text { on } \partial \Omega\right\},
\end{aligned}
$$

with Dirichlet boundary data $Q_{b} \in H^{1 / 2}\left(\partial \Omega, S_{0}\right)$.

Theorem

Let \mathcal{J} be of the form (1) with positive parameters a_{3}, B, q, K, I. Then there exists a solution pair $\left(u^{*}, \mathrm{Q}^{*}\right)$ that minimises \mathcal{J} over the admissible set \mathcal{A}.

Proof: by the direct method of calculus of variations.
(Davis and Gartland, 1998, Theorem 4.3) \& (Bedford, 2014, Theorem 5.19)

Section 2. A priori error estimates

Finite element approximations in (Xia et al., 2021)

Essentially...

we are solving a second order PDE (for Q) and fourth order PDE (for u), coupled together.

- For the second order PDE \Leftarrow common continuous Lagrange elements \checkmark
- For the fourth order PDE \Leftarrow a practical choice of finite elements?

Solution: use continuous Lagrange elements for u !
By adding the following penalty term (Engel et al., 2002; Brenner and Sung, 2005) in the total energy:

$$
\sum_{e \in \mathcal{E}_{l}} \int_{e} \frac{B \epsilon}{h_{e}^{3}}(\llbracket \nabla u \rrbracket)^{2} .
$$

Two independent problems when $q=0$

For tensor-valued Q: a second order PDE

$$
(\mathcal{P} 1) \begin{cases}-K \Delta Q+2 /\left(2|Q|^{2}-1\right) Q=0 & \text { in } \Omega \subset \mathbb{R}^{2} \\ Q=Q_{b} & \text { on } \partial \Omega\end{cases}
$$

For real-valued u : a fourth order PDE

$$
(\mathcal{P} 2) \begin{cases}2 B \nabla \cdot\left(\nabla \cdot \mathcal{D}^{2} u\right)+a_{1} u+a_{3} u^{3}=0 & \text { in } \Omega, \\ u=u_{b} & \text { on } \partial \Omega, \\ \mathcal{D}^{2} u=\mathcal{D}^{2} u_{b} & \text { on } \partial \Omega .\end{cases}
$$

Here, we take $a_{2}=0$ to only analyse the cubic nonlinearity for simplicity.

A priori estimates for tensor Q

(Davis and Gartland, 1998, Theorem 6.3) (Regularity)

Let Ω be an open, bounded, Lipschitz and convex domain. If the Dirichlet data $Q_{b} \in H^{1 / 2}\left(\partial \Omega, S_{0}\right)$, then any solution of $(\mathcal{P} 1)$ belongs to $H^{2}\left(\Omega, S_{0}\right)$.
(Davis and Gartland, 1998, Theorem 7.3)(H^{1} error estimate) If $\mathrm{Q} \in H^{2} \cap H_{b}^{1}\left(\Omega, S_{0}\right)$ and $\mathrm{Q}_{h} \in \mathrm{~V}_{h}$ (consisting of piecewise linear polynomials) represents an approximated solution to Q, it holds that

$$
\left\|\mathrm{Q}-\mathrm{Q}_{h}\right\|_{1} \lesssim h\|\mathrm{Q}\|_{2}
$$

Theorem (L^{2} error estimate)

Let Q be a regular solution of the nonlinear weak form for $(\mathcal{P} 1)$ and $\mathrm{Q}_{h} \in \mathrm{~V}_{h}$ is an approximated solution to Q , there holds that

$$
\left\|\mathrm{Q}-\mathrm{Q}_{h}\right\|_{0} \lesssim h^{2}\left(2+\left(3+2 h+2 h^{2}\right)\|\mathrm{Q}\|_{2}^{2}\right)\|\mathrm{Q}\|_{2} .
$$

To derive L^{2} error estimates for Q

Given $G \in L^{2}$, consider the linear dual problem to the primary problem ($\mathcal{P} 1$): find $\mathrm{N} \in H_{0}^{1}$ such that

$$
\begin{cases}-K \Delta N+4 /|Q|^{2} N+8 /(Q: N) Q-2 / N=G & \text { in } \Omega, \tag{2}\\ N=0 & \text { on } \partial \Omega .\end{cases}
$$

Weak formulation of (2): find $N \in H_{0}^{1}$ such that

$$
\begin{equation*}
\left\langle\mathcal{D N ^ { n }}(\mathrm{Q}) \mathrm{N}, \Phi\right\rangle:=A^{n}(\mathrm{~N}, \Phi)+3 B^{n}(\mathrm{Q}, \mathrm{Q}, \mathrm{~N}, \Phi)+C^{n}(\mathrm{~N}, \Phi)=(\mathrm{G}, \Phi)_{0} \tag{3}
\end{equation*}
$$

for all $\Phi \in \mathrm{H}_{0}^{1}$.

To derive L^{2} error estimates for Q

Given $\mathrm{G} \in L^{2}$, consider the linear dual problem to the primary problem ($\mathcal{P} 1$): find $\mathrm{N} \in H_{0}^{1}$ such that

$$
\begin{cases}-K \Delta N+4 /|Q|^{2} N+8 /(Q: N) Q-2 / N=G & \text { in } \Omega, \tag{2}\\ N=0 & \text { on } \partial \Omega .\end{cases}
$$

Weak formulation of (2): find $N \in H_{0}^{1}$ such that

$$
\begin{equation*}
\left\langle\mathcal{D \mathcal { N } ^ { n }}(\mathrm{Q}) \mathrm{N}, \Phi\right\rangle:=A^{n}(\mathrm{~N}, \Phi)+3 B^{n}(\mathrm{Q}, \mathrm{Q}, \mathrm{~N}, \Phi)+C^{n}(\mathrm{~N}, \Phi)=(\mathrm{G}, \Phi)_{0} \tag{3}
\end{equation*}
$$

for all $\Phi \in \mathrm{H}_{0}^{1}$.
Weak formulation of $(\mathcal{P} 1) \Longrightarrow$ find $Q \in H_{b}^{1}$ such that

$$
\mathcal{N}^{n}(\mathrm{Q}) \mathrm{P}:=A^{n}(\mathrm{Q}, \mathrm{P})+B^{n}(\mathrm{Q}, \mathrm{Q}, \mathrm{Q}, \mathrm{P})+C^{n}(\mathrm{Q}, \mathrm{P})=0
$$

for all $P \in \mathrm{H}_{0}^{1}$, where the bilinear forms are

$$
A^{n}(\mathrm{Q}, \mathrm{P}):=K \int_{\Omega} \nabla \mathrm{Q}: \nabla \mathrm{P}, C^{n}(\mathrm{Q}, \mathrm{P}):=-2 l \int_{\Omega} \mathrm{Q}: \mathrm{P}
$$

and the nonlinear operator is given by

$$
B^{n}(\Psi, \Phi, \Theta, \equiv):=\frac{4 /}{3} \int_{\Omega}((\Psi: \Phi)(\Theta: \Xi)+2(\Psi: \Theta)(\Phi: \equiv)) .
$$

Sketch proof of the L^{2}-error rates for Q

Lemma

For $\mathrm{Q} \in \mathrm{H}^{2} \cap \mathrm{H}_{b}^{1}, \mathrm{~N} \in \mathrm{H}^{2} \cap \mathrm{H}_{0}^{1}$ and $I_{h} \mathrm{Q} \in \mathrm{V}_{h} \subset \mathrm{H}_{b}^{1}$, it holds that

$$
A^{n}\left(I_{h} \mathrm{Q}-\mathrm{Q}, \mathrm{~N}\right) \lesssim h^{2}\|\mathrm{Q}\|_{2}\|\mathrm{~N}\|_{2}
$$

Lemma

The solution N to the weak form (3) of the dual linear problem belongs to $\mathrm{H}^{2} \cap \mathrm{H}_{0}^{1}$ and it holds that $\|\mathrm{N}\|_{2} \lesssim\|\mathrm{G}\|_{0}$.

A standard technique in the Aubin-Nitsche argument:
taking $G=I_{h} \mathrm{Q}-\mathrm{Q}_{h}$ and the test function $\Phi=I_{h} \mathrm{Q}-\mathrm{Q}_{h}$ in the weak dual form (3).

- Optimal rates in the H^{1} norm. \checkmark
- Optimal rates in the L^{2} norm. \checkmark

Remark: it also holds for higher order (>1) approximations by following similar steps in (Maity, Majumdar, and Nataraj, 2020).

Now, consider problem ($\mathcal{P} 2)$ for u

Continuous weak form of $(\mathcal{P} 2) \Longrightarrow$ find $u \in H^{2}(\Omega) \cap H_{b}^{1}(\Omega)$ s.t.

$$
\begin{equation*}
\mathcal{N}^{s}(u) v:=A^{s}(u, v)+B^{s}(u, u, u, v)+C^{s}(u, v)=L^{s}(v) \quad \forall v \in H^{2} \cap H_{0}^{1} \tag{4}
\end{equation*}
$$

where for $v, w \in H^{2}(\Omega)$,

$$
\begin{aligned}
A^{s}(v, w) & =2 B \int_{\Omega} \mathcal{D}^{2} v: \mathcal{D}^{2} w, C^{s}(v, w)=a_{1} \int_{\Omega} v w \\
L^{s}(v) & :=2 B \int_{\partial \Omega}\left(\mathcal{D}^{2} u_{b} \cdot \nabla v\right) \cdot \nu
\end{aligned}
$$

and for $\mu, \zeta, \eta, \xi \in H^{2}(\Omega)$,

$$
B^{s}(\mu, \zeta, \eta, \xi)=a_{3} \int_{\Omega} \mu \zeta \eta \xi .
$$

Newton linearisation \Longrightarrow find $v \in H^{2} \cap H_{0}^{1}$ such that

$$
\left\langle\mathcal{D} \mathcal{N}^{s}(u) v, w\right\rangle_{H^{2}}:=A^{s}(v, w)+3 B^{s}(u, u, v, w)+C^{s}(v, w)=L^{s}(w)
$$

for all $w \in H^{2} \cap H_{0}^{1}$.

Finite element discretisation for u

- C^{0} interior penalty methods (Brenner, 2011).
- We take the H^{2}-nonconforming but still continuous approximation $u_{h} \in W_{h, b} \subset H^{2}\left(\mathcal{T}_{h}\right) \cap H_{b}^{1}(\Omega)$ for the solution u of the continuous weak form (4).
Here,

$$
W_{h, b}:=\left\{v \in H^{2}\left(\mathcal{T}_{h}\right) \cap H^{1}(\Omega): v=u_{b} \text { on } \partial \Omega, v \in \mathbb{Q}_{\operatorname{deg}}(T) \forall T \in \mathcal{T}_{h}\right\} .
$$

- Denote the mesh-dependent H^{2}-like semi-norm for $v \in W_{h}$

$$
\|v\|_{h}^{2}:=\sum_{T \in \mathcal{T}_{h}}|v|_{H^{2}(T)}^{2}+\sum_{e \in \mathcal{E}_{l}} \int_{e} \frac{1}{h_{e}^{3}}|\llbracket \nabla v \rrbracket|^{2} .
$$

Here, $\llbracket \nabla w \rrbracket=(\nabla w)_{-} \cdot \nu_{-}+(\nabla w)_{+} \cdot \nu_{+}$.
Note that $\||\cdot|\|_{h}$ is indeed a norm on $W_{h, 0}$.

Discrete weak form of u

Find $u_{h} \in W_{h, b}$ such that

$$
\begin{align*}
\mathcal{N}_{h}^{s}\left(u_{h}\right) v_{h}:=A_{h}^{s}\left(u_{h}, v_{h}\right) & +P_{h}^{s}\left(u_{h}, v_{h}\right)+B^{s}\left(u_{h}, u_{h}, u_{h}, v_{h}\right)+C^{s}\left(u_{h}, v_{h}\right) \\
& =L^{s}\left(u_{h}\right) \quad \forall v_{h} \in W_{h, 0} \tag{5}
\end{align*}
$$

where for all $u, v \in W_{h}$,
$A_{h}^{s}(u, v):=2 B\left(\sum_{T \in \mathcal{T}_{h}} \int_{T} \mathcal{D}^{2} u: \mathcal{D}^{2} v-\sum_{e \in \mathcal{E}_{1}} \int_{e}\left\{\left\{\frac{\partial^{2} u}{\partial \nu^{2}}\right\}\right\} \llbracket \nabla v \rrbracket-\sum_{e \in \mathcal{E}_{l}} \int_{e}\left\{\left\{\frac{\partial^{2} v}{\partial \nu^{2}}\right\}\right\} \llbracket \nabla u \rrbracket\right)$,
and

$$
P_{h}^{s}(u, v):=\sum_{e \in \mathcal{E}_{l}} \frac{2 B \epsilon}{h_{e}^{3}} \int_{e} \llbracket \nabla u \rrbracket \llbracket \nabla v \rrbracket .
$$

Here, ϵ is the penalty parameter, $\left\{\left\{\frac{\partial^{2} u}{\partial \nu^{2}}\right\}\right\}=\frac{1}{2}\left(\left.\frac{\partial^{2} u^{\prime}}{\partial \nu^{2}}\right|_{e}+\left.\frac{\partial^{2} u_{-}}{\partial \nu^{2}}\right|_{e}\right)$.
Linearisation \Longrightarrow Seek $v_{h} \in W_{h, 0}$ such that

$$
\left\langle\mathcal{D \mathcal { N } _ { h } ^ { s } (u _ { h }) v _ { h } , w _ { h } \rangle = L ^ { s } (w _ { h }) \quad \forall w _ { h } \in W _ { h , 0 } , . , ~}\right.
$$

where $\left\langle\mathcal{D N _ { h } ^ { s }}\left(u_{h}\right) v_{h}, w_{h}\right\rangle:=A_{h}^{s}\left(v_{h}, w_{h}\right)+P_{h}^{s}\left(v_{h}, w_{h}\right)+3 B_{h}^{s}\left(u_{h}, u_{h}, v_{h}, w_{h}\right)+C_{h}^{s}\left(v_{h}, w_{h}\right)$.

Convergence in the $\||\cdot|\|_{h}$-norm

Brouwer's fixed point theorem \Longrightarrow the existence and local uniqueness result of the discrete solution u_{h}.

Theorem

Let u be a regular isolated solution of the nonlinear problem (4). For a sufficiently large ϵ and a sufficiently small h, there exists a unique solution u_{h} of the discrete nonlinear problem (5) within the local ball $\mathcal{B}_{R(h)}\left(I_{h} u\right):=\left\{v_{h} \in W_{h}:\left\|I_{h} u-v_{h}\right\|_{h} \leq R(h)\right\}$. Furthermore, we have

$$
\left\|\left\|u-u_{h}\right\|_{h} \lesssim h^{\min \left\{\operatorname{deg}-1, \mathbb{k}_{u}-2\right\}}\right.
$$

Here, $R(h)=\mathcal{O}\left(h^{\min \left\{\operatorname{deg}-1, \mathbb{k}_{u}-2\right\}}\right)$, deg indicates the degree of the approximating polynomials and $\mathbb{k}_{u} \geq 3$ represents the regularity of u.
\Longrightarrow optimal rates in the $\left\|\|\cdot\|_{h}\right.$-norm. \checkmark

Auxiliary results for $\||\cdot|\|_{h}$-error estimates

- We define the nonlinear map $\mu_{h}: W_{h} \rightarrow W_{h}$ by

$$
\left\langle\mathcal{D \mathcal { N } _ { h } ^ { s }}\left(I_{h} u\right) \mu_{h}\left(v_{h}\right), w_{h}\right\rangle=3 B_{h}^{s}\left(I_{h} u, I_{h} u, v_{h}, w_{h}\right)+L^{s}\left(w_{h}\right)-B_{h}^{s}\left(v_{h}, v_{h}, v_{h}, w_{h}\right) .
$$

Lemma (mapping from a ball to itself)

Let u be a regular isolated solution of the continuous nonlinear weak problem (4). For a sufficiently large ϵ and a sufficiently small mesh size h, there exists a positive constant $R(h)=\mathcal{O}\left(h^{\min \left\{\operatorname{deg}-1, \mathbb{k}_{u}-2\right\}}\right)$ such that:

$$
\left\|v_{h}-I_{h} u\right\|_{h} \leq R(h) \Rightarrow\left\|\mu_{h}\left(v_{h}\right)-I_{h} u\right\|_{h} \leq R(h) \quad \forall v_{h} \in W_{h, 0} .
$$

Lemma (contraction result)

For a sufficiently large ϵ, a sufficiently small mesh size h and any $v_{1}, v_{2} \in \mathcal{B}_{R(h)}\left(I_{h} u\right)$, there holds

$$
\left\|\mu_{h}\left(v_{1}\right)-\mu_{h}\left(v_{2}\right)\right\|_{h} \lesssim h^{\min \left\{\operatorname{deg}-1, \mathbb{k}_{u}-2\right\}}\left\|v_{1}-v_{2}\right\|_{h} .
$$

To derive L^{2} error estimates

We consider the linear dual problem to the primary nonlinear problem $(\mathcal{P} 2)$:

$$
\begin{cases}2 B \nabla \cdot\left(\nabla \cdot\left(\mathcal{D}^{2} \chi\right)\right)+a_{1} \chi+3 a_{3} u^{2} \chi=f_{\text {dual }} & \text { in } \Omega \\ \chi=0, \quad \mathcal{D}^{2} \chi=0 & \text { on } \partial \Omega\end{cases}
$$

for $f_{\text {dual }} \in L^{2}$.
Weak form: find $\chi \in H^{2} \cap H_{0}^{1}$ such that

$$
\left\langle\mathcal{D N}^{s}(u) \chi, v\right\rangle_{H^{2}}=\left\langle\mathcal{D} \mathcal{N}_{h}^{s}(u) \chi, v\right\rangle=\left(f_{\text {dual }}, v\right)_{0},
$$

for any $v \in H^{2} \cap H_{0}^{1}$.
Using the standard Aubin-Nitsche technique: take $f_{\text {dual }}=I_{h} u-u_{h}$ and $v=I_{h} u-u_{h}$ in the above weak form.

L^{2} error estimate for u

Theorem

Under the same conditions as in the theorem of the $\left\|\|\cdot\|_{h}\right.$-error rates, the discrete solution u_{h} approximates u such that

$$
\left\|u-u_{h}\right\|_{0} \lesssim \begin{cases}h^{\min \left\{\operatorname{deg}+1, \mathbb{k}_{u}\right\}} & \text { for } \operatorname{deg} \geq 3 \\ h^{2 \min \left\{\operatorname{deg}-1, \mathbb{k}_{u}-2\right\}}=h^{2} & \text { for } \operatorname{deg}=2\end{cases}
$$

\Longrightarrow optimal L^{2} error rates (only suboptimal for quadratic approximations) for polynomials with degree (≥ 3).

Remark: suboptimal rates with quadratic approximations are also observed for biharmonic equations (Süli and Mozolevski, 2007).

Section 3. Numerical verifications

Convergence tests via MMS

- Exact solutions:

$$
\begin{aligned}
Q_{11}^{e} & =\left(\cos \left(\frac{\pi(2 y-1)(2 x-1)}{8}\right)\right)^{2}-\frac{1}{2} \\
Q_{12}^{e} & =\cos \left(\frac{\pi(2 y-1)(2 x-1)}{8}\right) \sin \left(\frac{\pi(2 y-1)(2 x-1)}{8}\right), \\
u^{e} & =10((x-1) x(y-1) y)^{3} .
\end{aligned}
$$

Manufactured equations to be solved:

$$
\left\{\begin{array}{l}
4 B q^{4} u^{2} Q_{11}+2 B q^{2} u\left(\partial_{x}^{2} u-\partial_{y}^{2} u\right)-2 K \Delta Q_{11}-4 I Q_{11}+16 / Q_{11}\left(Q_{11}^{2}+Q_{12}^{2}\right)=f_{1}, \\
4 B q^{4} u^{2} Q_{12}+4 B q^{2} u\left(\partial_{x} \partial_{y} u\right)-2 K \Delta Q_{12}-4 I Q_{12}+16 / Q_{12}\left(Q_{11}^{2}+Q_{12}^{2}\right)=f_{2}, \\
a_{1} u+a_{2} u^{2}+a_{3} u^{3}+2 B \nabla \cdot\left(\nabla \cdot\left(\mathcal{D}^{2} u\right)\right)+B q^{4}\left(4\left(Q_{11}^{2}+Q_{12}^{2}\right)+1\right) u+2 B q^{2}\left(t_{1}+t_{2}\right)=f_{3},
\end{array}\right.
$$

with

$$
\begin{aligned}
& t_{1}:=\left(Q_{11}+1 / 2\right) \partial_{x}^{2} u+\left(-Q_{11}+1 / 2\right) \partial_{y}^{2} u+Q_{12} \partial_{x} \partial_{y} u \\
& t_{2}:=\partial_{x}^{2}\left(u\left(Q_{11}+1 / 2\right)\right)+\partial_{y}^{2}\left(u\left(-Q_{11}+1 / 2\right)\right)+2 \partial_{x} \partial_{y}\left(u Q_{12}\right)
\end{aligned}
$$

Here, f_{1}, f_{2}, f_{3} are source terms derived from substituting the exact solutions to the left hand sides.

Convergence tests via MMS: settings

- $\Omega=[0,1] \times[0,1]$.
- Mesh size $h=\frac{1}{N}$ with $N=6,12,24,48$.
- Define numerical errors in L^{2} and H^{1} norms as

$$
\begin{aligned}
& \left\|\mathbf{e}_{u}\right\|_{0}=\left\|u^{e}-u_{h}\right\|_{0},\left\|\mathbf{e}_{u}\right\|_{1}=\left\|u^{e}-u_{h}\right\|_{1},\left\|\mathbf{e}_{u}\right\|_{h}=\left\|u^{e}-u_{h}\right\|_{h}, \\
& \left\|\mathbf{e}_{Q}\right\|_{0}=\left\|\left(Q_{11}^{e}, Q_{12}^{e}\right)-\left(Q_{11, h}, Q_{12, h}\right)\right\|_{0} \\
& \left\|\mathbf{e}_{Q}\right\|_{1}=\left\|\left(Q_{11}^{e}, Q_{12}^{e}\right)-\left(Q_{11, h}, Q_{12, h}\right)\right\|_{1} .
\end{aligned}
$$

- Choose parameters: $a_{1}=-10, a_{2}=0, a_{3}=10, B=10^{-5}, K=0.3$ and $I=30$.

Convergence rates for $q=0$

Approximating tensor Q :

	$N=\frac{1}{h}$	$\left\\|\mathbf{e}_{Q}\right\\|_{0}$	rate	$\left\\|\mathbf{e}_{Q}\right\\|_{1}$	rate
$\left[\mathbb{Q}_{1}\right]^{2}$	6	8.12e-04	-	3.78e-02	-
	12	2.02e-04	2.01	1.88e-02	1.01
	24	5.05e-05	2.00	$9.39 \mathrm{e}-03$	1.00
	48	1.26e-05	2.00	$4.69 \mathrm{e}-03$	1.00
$\left[\mathbb{Q}_{2}\right]^{2}$	6	$2.92 \mathrm{e}-05$	-	1.11e-03	-
	12	$3.90 \mathrm{e}-06$	2.90	2.71e-04	2.04
	24	$5.02 \mathrm{e}-07$	2.96	$6.72 \mathrm{e}-05$	2.01
	48	$6.36 \mathrm{e}-08$	2.99	1.68e-05	2.00
$\left[\mathbb{Q}_{3}\right]^{2}$	6	3.02e-07	-	$2.25 \mathrm{e}-05$	-
	12	2.17e-08	3.80	2.72e-06	3.05
	24	$1.45 \mathrm{e}-09$	3.90	3.34e-07	3.03
	48	$9.33 \mathrm{e}-11$	3.96	4.13e-08	3.01

\Longrightarrow optimal rates in the H^{1} and L^{2} norms. \checkmark

Convergence rates for $q=0$

Approximating u with $\epsilon=1$:

	$N=\frac{1}{h}$	$\left\\|\mathbf{e}_{u}\right\\|_{0}$	rate	$\left\\|\mathbf{e}_{u}\right\\|_{1}$	rate	$\left\\|\mathbf{e}_{u}\right\\|_{h}$	rate
\mathbb{Q}_{2}	6	1.17e-05	-	3.46e-04	-	$1.36 \mathrm{e}-02$	-
	12	$2.60 \mathrm{e}-06$	2.17	9.81e-05	1.82	7.25e-03	0.91
	24	$6.37 \mathrm{e}-07$	2.03	$2.54 \mathrm{e}-05$	1.95	$3.54 \mathrm{e}-03$	1.03
	48	$1.82 \mathrm{e}-07$	1.80	$6.88 \mathrm{e}-06$	1.88	$1.76 \mathrm{e}-03$	1.01
\mathbb{Q}_{3}	6	4.73e-06	-	1.32e-04	-	$4.98 \mathrm{e}-03$	
	12	$3.32 \mathrm{e}-07$	3.83	$1.41 \mathrm{e}-05$	3.23	9.96e-04	2.32
	24	$2.12 \mathrm{e}-08$	3.97	1.63e-06	3.12	2.46e-04	2.02
	48	1.32e-09	4.00	$1.99 \mathrm{e}-07$	3.03	$6.14 \mathrm{e}-05$	2.00
\mathbb{Q}_{4}	6	$2.01 \mathrm{e}-07$	-	7.76e-06	-	3.94e-04	-
	12	$5.40 \mathrm{e}-09$	5.22	$4.30 \mathrm{e}-07$	4.17	$4.88 \mathrm{e}-05$	3.01
	24	1.68e-10	5.00	2.68e-08	4.00	6.11e-06	2.99
	48	5.27e-12	4.99	1.68e-09	3.99	7.64e-07	3.00

\Longrightarrow optimal rates in the $\|\cdot \cdot\|_{h},\|\cdot\|_{1}$ and $\|\cdot\|_{0}$ norms (only suboptimal in the $\|\cdot\|_{0}$ norm with quadratic approximations).

Convergence rates for $q=30$

Approximating tensor Q (fixing the approximation \mathbb{Q}_{3} for u with $\epsilon=5 \times 10^{4}$):

	$N=\frac{1}{h}$	$\left\\|\mathbf{e}_{\mathrm{Q}}\right\\|_{0}$	rate	$\left\\|\mathbf{e}_{\mathrm{Q}}\right\\|_{1}$	rate
	6	$8.12 \mathrm{e}-04$	-	$3.78 \mathrm{e}-02$	-
$\left[\mathbb{Q}_{1}\right]^{2}$	12	$2.02 \mathrm{e}-04$	2.01	$1.88 \mathrm{e}-02$	1.01
	24	$5.05 \mathrm{e}-05$	2.00	$9.39 \mathrm{e}-03$	1.00
	48	$1.26 \mathrm{e}-05$	2.00	$4.69 \mathrm{e}-03$	1.00
	6	$2.92 \mathrm{e}-05$	-	$1.11 \mathrm{e}-03$	-
$\left[\mathbb{Q}_{2}\right]^{2}$	12	$3.90 \mathrm{e}-06$	2.90	$2.71 \mathrm{e}-04$	2.04
	24	$5.02 \mathrm{e}-07$	2.96	$6.72 \mathrm{e}-05$	2.01
	48	$6.37 \mathrm{e}-08$	2.98	$1.68 \mathrm{e}-05$	2.00
	6	$3.02 \mathrm{e}-07$	-	$2.25 \mathrm{e}-05$	-
$\left[\mathbb{Q}_{3}\right]^{2}$	12	$2.17 \mathrm{e}-08$	3.80	$2.72 \mathrm{e}-06$	3.05
	24	$1.45 \mathrm{e}-09$	3.90	$3.34 \mathrm{e}-07$	3.03
	48	$9.32 \mathrm{e}-11$	3.96	$4.13 \mathrm{e}-08$	3.01

\Longrightarrow optimal rates in the H^{1} and L^{2} norms. \checkmark

Convergence tests for $q=30$

$\underline{\text { Approximating } u \text { with } \epsilon=5 \times 10^{4} \text { (fixing the approximation }\left[\mathbb{Q}_{2}\right]^{2} \text { for } \mathrm{Q} \text {): }}$

	$N=\frac{1}{h}$	$\left\\|\mathbf{e}_{u}\right\\|_{0}$	rate	$\left\\|\mathbf{e}_{u}\right\\|_{1}$	te	$\left\\|\mathbf{e}_{u}\right\\|_{h}$	rate
\mathbb{Q}_{2}	6	$1.21 \mathrm{e}-05$	-	$3.59 \mathrm{e}-04$	-	$1.37 \mathrm{e}-02$	-
	12	$3.98 \mathrm{e}-06$	1.61	$1.42 \mathrm{e}-04$	1.34	$8.30 \mathrm{e}-03$	0.72
	24	$1.57 \mathrm{e}-06$	1.35	$4.99 \mathrm{e}-05$	1.51	3.89e-03	1.09
	48	$2.58 \mathrm{e}-07$	2.60	9.07e-06	2.46	$1.78 \mathrm{e}-03$	1.13
\mathbb{Q}_{3}	6	7.36e-06	-	$2.25 \mathrm{e}-04$	-	$9.10 \mathrm{e}-03$	
	12	$4.13 \mathrm{e}-07$	4.16	1.86e-05	3.60	1.11e-03	3.03
	24	$4.23 \mathrm{e}-08$	3.29	2.24e-06	3.05	2.53e-04	2.14
	48	$3.01 \mathrm{e}-09$	3.81	$2.28 \mathrm{e}-07$	3.29	$6.15 \mathrm{e}-05$	2.0

\Longrightarrow almost optimal (with some fluctuations) in the $\left\|\|\cdot\|_{h}\right.$ and $\| \cdot \|_{0}$ norms (almost suboptimal in the L^{2}-norm for quadratic approximations).

Section 4. Conclusions and future work

Conclusions

- Existence of minimisers is proven for the proposed smectic-A model in (Xia et al., 2021).
- A priori error estimates are illustrated for the decoupled case.
- Numerical tests verify the analysed error estimates.

Conclusions

- Existence of minimisers is proven for the proposed smectic-A model in (Xia et al., 2021).
- A priori error estimates are illustrated for the decoupled case.
- Numerical tests verify the analysed error estimates.

Future work

- Design fast solvers for the model.
- Apply to other smectic scenarios.

Conclusions

- Existence of minimisers is proven for the proposed smectic-A model in (Xia et al., 2021).
- A priori error estimates are illustrated for the decoupled case.
- Numerical tests verify the analysed error estimates.

Future work

- Design fast solvers for the model.
- Apply to other smectic scenarios.

Thank you for your attention!

