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Abstract. In this paper, we mainly propose two kinds of high-accuracy schemes for the
coupled nonlinear Schrödinger (CNLS) equations, based on the Fourier pseudospec-
tral method (FPM), the high-order compact method (HOCM) and the Hamiltonian
boundary value methods (HBVMs). With periodic boundary conditions, the proposed
schemes admit the global energy conservation law and converge with even-order ac-
curacy in time. Numerical results are presented to demonstrate the accuracy, energy-
preserving and long-time numerical behaviors. Compared with symplectic Runge-
Kutta methods (SRKMs), the proposed schemes are assuredly more effective to pre-
serve energy, which is consistent with our theoretical analysis.
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1 Introduction

Since the explosion of interest in nonlinear science, the nonlinear Schrödinger equation
plays a central role in a wide range of physical phenomena, including nonlinear op-
tics [19], plasma physics [23], atomic Bose-Einstein condensates [2], etc. In order to de-
scribe two interacting nonlinear packets in dispersive or conservative systems, in 1967,
the coupled nonlinear Schrödinger (CNLS) equations were firstly derived by Benney and
Newell [1].

∗Corresponding author. Email addresses: smz161619@163.com (M. Song), shsong@nudt.edu.cn (S. Song),
qianxu@nudt.edu.cn (X. Qian), H.zhang@uu.nl (H. Zhang), jingmin.xia@maths.ox.ac.uk (J. Xia)

http://www.global-sci.com/ 1127 c©2019 Global-Science Press



1128 M. Song et al. / Commun. Comput. Phys., 25 (2019), pp. 1127-1143

In this paper, we are mainly concerned with the CNLS equations
{

iφt+φxx+(|φ|2+β|ψ|2)φ=0,

iψt+ψxx+(|ψ|2+β|φ|2)ψ=0,
(1.1)

with suitable initial data and periodic boundary conditions. Here, φ(x,t) and ψ(x,t),
(x,t)∈ [xL,xR]×[0,T], are complex envelopes of two wave packets, β is the coupling con-
stant and i is the imaginary unit. Due to the intrinsic stability of equations, solitons could
be formed when the nonlinear term exactly balances the wave packet dispersion and
their dynamics have appeared in many important applications [27, 29]. Therefore, the
signification about solitons of the CNLS equations (1.1) has been widely acknowledged.

So far, numerous researches have been conducted to solve the CNLS equations. Based
on the finite difference method, Ismail and Alamri have achieved linearly implicit con-
servative scheme [20] and fourth-order explicit scheme [21]. Both of them could pre-
serve discrete energy exactly. Kurtinaitis and Ivanauska [24] employed explicit, implicit,
Crank-Nicolson type and Hopsotch type finite difference scheme, respectively, to simu-
late the dynamics of the 3-CNLS equations. In [22], the Galerkin method was utilized
for the CNLS equations. In [4], the authors discussed how to apply the differential trans-
formation method to solve the CNLS equations. Furthermore, Bao et al. [3] simulated
the bright and dark soliton solutions of the CNLS system successfully by using the time-
splitting pseudospectral method.

In recent decades, it has been widely convinced that structure-preserving methods,
which are able to preserve the intrinsic properties of the original system, could achieve
long-time high precision simulation in most cases. Therefore, many important results
were subsequently reported, such as symplectic Runge-Kutta methods (SRKMs) [18, 31],
multi-symplectic methods [15, 28] and semi-explicit and explicit multi-symplectic meth-
ods [30,32]. In addition, energy-preserving methods, including discrete gradient method
[26], local energy-preserving method [17], average vector field method [16] and Hamil-
tonian boundary value methods (HBVMs), were widely applied for numerical simu-
lation as well. Due to its remarkable energy-preserving property, the HBVMs has at-
tracted much attention since it was first proposed for ODEs by Brugnano et al. [5, 6] in
2010. In [7], the efficient implementation of the HBVMs was fully discussed. Then Brug-
nano and Sun [8] further proposed a multiple invariants conserving method for Hamil-
tonian ODEs. Recently, this method was generalised to solve semilinear wave equa-
tions [9], nonlinear Schrödinger equation [12, 13] and other Hamiltonian PDEs [10, 11].
To the best of our knowledge, there exists no report about the application of the HBVMs
for the CNLS equations at the moment, so we combine this energy-preserving method
with the Fourier pseudospectral method (FPM) [14] and the high-order compact method
(HOCM) [25] to construct two kinds of numerical schemes.

As is well known, we can rewrite the CNLS equations (1.1) as the infinite-dimensional
Hamiltonian system

∂z

∂t
= J

δH
δz

, (1.2)
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where z=(φ, ψ)T, and J is a constant linear skew-symmetric operator. According to the
variational derivative formula [16]

δH
δu

=
∂H

∂u
−∂x

(

∂H

∂ux

)

+∂2
x

(

∂H

∂uxx

)

−··· , (1.3)

we have

H[φ,ψ](t)=
∫

Ω
H(x,t)dx=

∫

Ω

[

1

4
(|φ|4+|ψ|4)− 1

2
(|φx|2+|ψx|2)+

β

2
|φ|2|ψ|2

]

dx. (1.4)

Here, the Hamiltonian H also represents the global energy of the CNLS system (1.1),
meanwhile, it could be intrinsically preserved,

dH
dt

=
δH
δz

∂z

∂t
=

δH
δz

J
δH
δz

=0.

By letting φ(x,t) = q1(x,t)+iq2(x,t) and ψ(x,t) = q3(x,t)+iq4(x,t), the Hamiltonian
system (1.2) can be expanded as the real-valued equations



























∂q1

∂t =− ∂2q2

∂x2 −
(

(q2
1+q2

2)+β(q2
3+q2

4)
)

q2,

∂q2

∂t =
∂2q1

∂x2 +
(

(q2
1+q2

2)+β(q2
3+q2

4)
)

q1,

∂q3

∂t =− ∂2q4

∂x2 −
(

(q2
3+q2

4)+β(q2
1+q2

2)
)

q4,

∂q4

∂t =
∂2q3

∂x2 +
(

(q2
3+q2

4)+β(q2
1+q2

2)
)

q3,

(1.5)

that is,
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∂t
∂q2

∂t
∂q3

∂t
∂q4

∂t
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0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0























∂2q1

∂x2 +
(

(q2
1+q2

2)+β(q2
3+q2

4)
)

q1

∂2q2

∂x2 +
(

(q2
1+q2

2)+β(q2
3+q2

4)
)

q2

∂2q3

∂x2 +
(

(q2
3+q2

4)+β(q2
1+q2

2)
)

q3

∂2q4

∂x2 +
(

(q2
3+q2

4)+β(q2
1+q2

2)
)

q4















. (1.6)

Meanwhile, because of the periodic boundary conditions, the Hamiltonian H (1.4) can be
rewritten as

H[q1,q2,q3,q4](t)=
∫

Ω

[

1

4
(q2

1+q2
2)

2+
1

4
(q2

3+q2
4)

2+
β

2
(q2

1+q2
2)(q

2
3+q2

4)

+
1

2
(q1q1xx+q2q2xx+q3q3xx+q4q4xx)

]

dx. (1.7)

The rest of the paper is arranged as follows. In the next section, we transform the
infinite-dimensional Hamiltonian system into the finite-dimensional Hamiltonian system
by using the FPM and the HOCM. Hereafter, energy-preserving schemes are constructed
for the CNLS equations based on the HBVMs in Section 3. In Section 4, numerical ex-
periments are performed to testify the effectiveness of the proposed schemes. Finally,
conclusions are made in Section 5.



1130 M. Song et al. / Commun. Comput. Phys., 25 (2019), pp. 1127-1143

2 Space-discretization by the FPM and the HOCM

In this section, two different spatial discretizations, the FPM and the HOCM, are intro-
duced. Both of them are natural to work on a bounded domain [xL,xR] and an uniform
grid (xi,tj) with xi= xL+i∆x (i=0,1,··· ,M−1) and tj = j∆t (j=0,1,··· ,N) is considered.

Firstly, based on the standard Fourier pseudospectral formulation, the FPM [14] could
construct the spectral differentiation matrices D1 and D2, which are widely used in dis-
cretization of differential operators ∂x and ∂xx,

(D1)j,l =

{

1
2(−1)j+lµcot(µ

xj−xl

2 ), j 6= l,

0, j= l,

(D2)j,l =

{

1
2(−1)j+l+1µ2csc2(µ

xj−xl

2 ), j 6= l,

−µ2 N2+2
12 , j= l,

where j,l = 1,··· ,M and µ = 2π/L, L = xR−xL. Actually, the biggest advantage of this
method is that it could achieve spectral accuracy in spatial direction.

Alternatively, we can apply the HOCM, which is beneficial to reduce the computa-
tional cost, to discrete differential operators as well. Considering the discretization of the
first-order derivative, we have the formula [25]

β f ′i−2+α f ′i−1+ f ′i +α f ′i+1+β f ′i+2= c
fi+3− fi−3

6∆x
+b

fi+2− fi−2

4∆x
+a

fi+1− fi−1

2∆x
. (2.1)

When the coefficients are chosen as α= 1
3 , β= 0, a= 14

9 , b= 1
9 , c= 0, the truncation error

4
7! (∆x)6 f (7) vanishes and the formula (2.1) is formally sixth-order accurate in space. Un-
der the periodic boundary condition, the first-order differentiation matrix can be written
as D̃1=A−1B,

A=
1

3















3 1 1
1 3 1

. . .
. . .

. . .

1 3 1
1 1 3















, B=
1

36∆x























0 28 1 −1 −28
−28 0 28 1 −1
−1 −28 0 28 1

0
. . .

. . .
. . .

. . .
. . .

−1 −28 0 28 1
1 −1 −28 0 28

28 1 −1 −28 0























,

and the second-order differentiation matrix could be naturally obtained as D̃2= D̃2
1. Ob-

viously, this method is able to construct sixth-order compact scheme in spatial direction.
More importantly, these two space discretization methods are able to guarantee that

the first-order differentiation matrices are skew-symmetric and the second-order differ-
entiation matrices are symmetric. This is the key to preserve global energy or Hamil-
tonian exactly. In following text, we first use D1 and D2 to construct numerical schemes
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based on the FPM, and the other numerical schemes based on the HOCM can be obtained
easily by replacing D1, D2 with D̃1, D̃2.

After the space-discretization, the following semi-discrete Hamiltonian system can be
obtained as



















q̇1=−D2q2−
(

(q1.2+q2.2)+β(q3.2+q4.2)
)

.∗q2,

q̇2= D2q1+
(

(q1.2+q2.2)+β(q3.2+q4.2)
)

.∗q1,

q̇3=−D2q4−
(

(q3.2+q4.2)+β(q1.2+q2.2)
)

.∗q4,

q̇4= D2q3+
(

(q3.2+q4.2)+β(q1.2+q2.2)
)

.∗q3,

(2.2)

where qi(t)=
(

qij(t)
)

M×1
(i=1,2,3,4, j=0,··· ,M−1), qm.2=(qm0×qm0,··· , qm,M−1×qm,M−1)

T

and qm.∗qn=(qm0×qn0,··· , qm,M−1×qn,M−1)
T, m,n=1,2,3,4. Meanwhile, the discrete form

of the Hamiltonian H (1.7) is

H(q1,q2,q3,q4)=∆x
N−1

∑
j=0

(

1

4
(q2

1j+q2
2j)

2+
1

4
(q2

3j+q2
4j)

2+
1

2
β(q2

1j+q2
2j)(q

2
3j+q2

4j)

)

+
1

2
∆x
(

qT
1 D2q1+qT

2 D2q2+qT
3 D2q3+qT

4 D2q4

)

. (2.3)

By introducing

J=
1

∆x









0 −I 0 0
I 0 0 0
0 0 0 −I

0 0 I 0









, z=









q1

q2

q3

q4









,

Eq. (2.2) can be rewritten as
ż= f (z)= J∇H(z), (2.4)

where ∇ is the gradient operator. Consequently,

dH(z)

dt
=∇H(z)Tż=∇H(z)TJ∇H(z)≡0.

Thus, H(z) is still intrinsically preserved after space-discretization. In the following text,
we will focus on the semi-discrete problem (2.4).

3 Hamiltonian boundary value methods for the CNLS equations

In this section, the HBVMs will be used for the full discretization of the CNLS equations.
To achieve one-step approximation over [t0,t0+∆t], we take the scaled and shifted Leg-
endre polynomials in the interval [0,1], Pi(t), satisfy the recurrence formula:

P0(t)=1, P1(t)=
√

3(2t−1),

Pi+1(t)=(2t−1)
2i+1

i+1

√

2i+3

2i+1
Pi(t)−

i

i+1

√

2i+3

2i−1
Pi−1(t), i=1,2,··· .
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Following the approach in [7], the right-hand side of the system (2.4) can be expanded
in the interval [0,∆t], as

ż(t0+τ∆t)=
∞

∑
j=0

γj(z)Pj(τ), τ∈ [0, 1], (3.1)

where γj(z)= 〈 f (z),Pj(τ)〉 is the Fourier coefficient. By truncating the series, we set σ̇(t)
as the approximation of ż(t) over [t0,t0+∆t],

σ̇(t0+τ∆t)=
r−1

∑
j=0

γj(σ)Pj(τ), τ∈ [0, 1]. (3.2)

Then, the approximation polynomial σ(t) of true solution z(t) is taken as

σ(t0+τ∆t)=σ0+∆t
r−1

∑
j=0

γj(σ)
∫ τ

0
Pj(x)dx, τ∈ [0, 1], (3.3)

where σ0=σ(t0)=z(t0). Consequently,

H(σ(t0+∆t))−H((σ(t0))=∆t
∫ 1

0
∇H((σ(t0+τ∆t))T

σ̇(t0+τ∆t)dτ

=∆t
r−1

∑
j=0

(

∫ 1

0
Pj(τ)∇H((σ(t0+τ∆t))dτ

)T

γj(σ). (3.4)

Based on the rule of inner product, we set

γj(σ)=
∫ 1

0
Pj(τ)J∇H((σ(t0+τ∆t))dτ, j=0,··· ,r−1,

where J is skew-symmetric. Then the Hamiltonian can be preserved theoretically,

H((σ(t0+∆t))−H((σ(t0))

=∆t
r−1

∑
j=0

(

∫ 1

0
Pj(τ)∇H((σ(t0+τ∆t))dc

)T∫ 1

0
Pj(τ)J∇H((σ(t0+τ∆t))dτ

=∆t
r−1

∑
j=0

(

∫ 1

0
Pj(τ)∇H((σ(t0+τ∆t))dτ

)T

J

(

∫ 1

0
Pj(τ)∇H((σ(t0+τ∆t))dτ

)

=0. (3.5)

For the integral of γj(σ), the Gauss-Legendre quadrature formula is applied,

γj=
k

∑
l=1

αlPj(cl)J∇H((σ(t0+cl∆t))+Ej(∆t), (3.6)
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where ci and αi (i=1,··· ,k) are the distinct abscissae and corresponding weights, respec-
tively, and Ej(∆t) denotes the error of the numerical integration formula. Ignoring the
quadrature error in Eq. (3.6) and the truncation error in Eq. (3.2) temporarily, we have

σ̇(t0+ci∆t)=
r−1

∑
j=0

Pj(ci)

(

k

∑
l=1

αlPj(cl)J∇H(σ(t0+cl∆t))

)

, (3.7)

and

σ(t0+ci∆t)=σ0+∆t
k

∑
l=1

αl

(

r−1

∑
j=0

aijPj(cl)

)

J∇H(σ(t0+cl∆t)), (3.8)

where aij=
∫ ci

0 Pj(t)dt (i=1,··· ,k, j=0,··· ,r−1). According to Eq. (3.8), the approximation
to z(t0+∆t) is given by

σ(t0+∆t)=σ0+∆t
k

∑
i=1

αiJ∇H(σ(tn+ci∆t)). (3.9)

Concerning the accuracy of such an approximation, it can be proved (see, e.g., [7])
that: when k≥ s and σ(t0+∆t) is the approximation of z(t0+∆t) provided by Eq. (3.9),
then

z(t0+∆t)−σ(t0+∆t)=O(∆t2r+1). (3.10)

Concerning the Hamiltonian error, which depends on the quadrature error in Eq. (3.6),
according to [7], it can be proved that

H(σ(t0+∆t))−H(σ(t0))=0, (3.11)

when H is a polynomial and its degree v≤2k/r. Conversely

H(σ(t0+∆t))−H(σ(t0))=O(∆t2k+1). (3.12)

In the present case, since the Hamiltonian (2.3) is a polynomial of degree 4, any
HBVMs(k,r) (k≥2r) will be convergent of order 2r and energy-preserving. For the semi-
discrete CNLS equations (2.2), the first step of application of the energy-preserving schemes
can be written as























1
∆t

(

q1
1−q0

1

)

=−∑
k
i=1αi

(

D2Q2i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q2i

)

,
1

∆t

(

q1
2−q0

2

)

= ∑
k
i=1αi

(

D2Q1i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q1i

)

,
1

∆t

(

q1
3−q0

3

)

=−∑
k
i=1αi

(

D2Q4i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q4i

)

,
1

∆t

(

q1
4−q0

4

)

= ∑
k
i=1αi

(

D2Q3i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q3i

)

,

(3.13)
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where











q0
1

q0
2

q0
3

q0
4











:=σ0,











q1
1

q1
2

q1
3

q1
4











:=σ(t0+∆t),











Q1i

Q2i

Q3i

Q4i











:=σ(t0+ci∆t), ,i=1,··· ,k,

and σ(t0+ci∆t) is defined according to (3.8). Then the following steps of numerical iter-
ation are similar as before. Here, we mainly consider the situations of k= 2r, r= 1,2,3,,
and construct second-order, fourth-order and sixth-order schemes in time, respectively.
Actually, when k= r, scheme (3.13) reduces to r-stage Gauss-Legendre SRKM and fails
to preserve energy exactly, whereas the HBVMs(k,r) are all equivalent, up to round-off
errors, for k≥ 2r. Especially, when k= r = 1, the HBVM is equivalent to the symplectic
implicit mid-point method,















































1
∆t

(

q1
1−q0

1

)

=−D2q
1
2
2 −
(

(

q
1
2
1

)

.2+
(

q
1
2
2

)

.2+β
(

q
1
2
3

)

.2+β
(

q
1
2
4

)

.2
)

.∗q
1
2
2 ,

1
∆t

(

q1
2−q0

2

)

= D2q
1
2
1 +

(

(

q
1
2
1

)

.2+
(

q
1
2
2

)

.2+β
(

q
1
2
3

)

.2+β
(

q
1
2
4

)

.2
)

.∗q
1
2
1 ,

1
∆t

(

q1
3−q0

3

)

=−D2q
1
2
4 −
(

(

q
1
2
3

)

.2+
(

q
1
2
4

)

.2+β
(

q
1
2
1

)

.2+β
(

q
1
2
2

)

.2
)

.∗q
1
2
4 ,

1
∆t

(

q1
4−q0

4

)

= D2q
1
2
3 +

(

(

q
1
2
3

)

.2+
(

q
1
2
4

)

.2+β
(

q
1
2
1

)

.2+β
(

q
1
2
2

)

.2
)

.∗q
1
2
3 ,

(3.14)

where q
1
2
i =

1
2

(

q0
i +q1

i

)

, i=1,2,3,4.

Furthermore, the other kind of scheme, using the HOCM for space-discretization,
could be constructed based on scheme (3.13) by replacing D2 with D̃2,























1
∆t

(

q1
1−q0

1

)

=−∑
k
i=1αi

(

D̃2Q2i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q2i

)

,
1

∆t

(

q1
2−q0

2

)

= ∑
k
i=1αi

(

D̃2Q1i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q1i

)

,
1

∆t

(

q1
3−q0

3

)

=−∑
k
i=1αi

(

D̃2Q4i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q4i

)

,
1

∆t

(

q1
4−q0

4

)

= ∑
k
i=1αi

(

D̃2Q3i+
((

Q1i.
2+Q2i.

2
)

+β
(

Q3i.
2+Q4i.

2
))

.∗Q3i

)

.

(3.15)

4 Numerical experiments

The main purpose of this section is to assess high-accuracy, energy-preserving and long-
time numerical behaviors of the proposed schemes (3.13) and (3.15) with k=2r, r=1,2,3,
by simulating the evolution of solitons. In the following numerical experiments, unless
the content is stated, scheme (3.13) is mainly applied.
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4.1 Single soliton

In this experiment, we take β=1 and the initial conditions as

φ(x,0)=ψ(x,0)=sech(x)exp(ix), −306x630. (4.1)

First, we discuss the situation of r=1. The L2, L∞ solution errors and the convergence
orders in time with ∆x=0.2 are exhibited in Table 1 and Table 2. Obviously, both of the
two numerical solutions converge to the exact solution with second order in time and
their solution errors are very close. Then, with different grids, Table 3 presents different
maximum energy errors for k= 1 and k= 2 in t∈ [0,10]. By comparison, the HBVM(1,1)
can only keep energy in some degree, whereas the HBVM(2,1) has marked effectiveness
of energy-preserving, even if the grid is crude. Fig. 1 shows the propagation of the single
soliton in t∈ [0,200]. From this figure, we find that the waveforms of φ and ψ are always

Table 1: The convergence orders in time of scheme (3.13) with r=1, k=2 at t=1.

∆t L2 error order L∞ error order

φ 0.005 4.2187×10−4 - 2.9214×10−4 -

0.0025 1.0429×10−4 2.0162 7.2156×10−5 2.0175

0.00125 2.4833×10−5 2.0425 1.7179×10−5 2.0705

ψ 0.005 4.2187×10−4 - 2.9214×10−4 -

0.0025 1.0429×10−4 2.0162 7.2156×10−5 2.0175

0.00125 2.4833×10−5 2.0425 1.7179×10−5 2.0705

Table 2: The convergence orders in time of scheme (3.13) with r=1, k=1 at t=1.

∆t L2 error order L∞ error order

φ 0.005 3.9168×10−4 - 3.0801×10−4 -

0.0025 9.6833×10−5 2.0161 7.6079×10−5 2.0174

0.00125 2.3059×10−5 2.0702 1.8113×10−5 2.0705

ψ 0.005 3.9168×10−4 - 3.0801×10−4 -

0.0025 9.6833×10−5 2.0161 7.6079×10−5 2.0174

0.00125 2.3059×10−5 2.0702 1.8113×10−5 2.0705

Table 3: Maximum energy errors of scheme (3.13) in t∈ [0,10] with r=1.

∆x ∆t k=1 k=2

0.8 0.08 1.0422×10−1 5.4783×10−12

0.8 0.04 3.8533×10−2 1.4937×10−11

0.4 0.02 4.6107×10−5 1.5365×10−13

0.2 0.005 1.7368×10−7 1.2523×10−13
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Figure 1: The waveform of the initial conditions and numerical solutions of scheme (3.13) with r=1, k=2 at
t=100 and t=200 (∆x=0.2, ∆t=0.005).
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Figure 2: The convergence orders in time of scheme (3.13) with r=2, k=4 at t=1 (∆x=0.2).

the same at t=0, t=100 and t=200. This is why the solution errors of φ and ψ have no
differences in Table 1.

Second, we set r= 2. In Fig. 2, the convergence orders in time of scheme (3.13) with
k=4 are observed. As is shown, the numerical results are consistent with the theoretical
estimation. That is, the convergence order in time is four. Maximum energy errors of
scheme (3.13) with different grid and different k are listed in Table 4. Energy-preserving
scheme (k= 4) certainly has better performance in terms of the energy error. However,
if the grid is small enough, all of them could achieve practical energy-preserving in this
experiment. Moreover, we also find when k=4, the energy error of ∆x=0.4, ∆t=0.02 is
smaller than that of ∆x=0.2, ∆t=0.01. In fact, smaller grid renders larger number of the
iterations and more accumulated errors for simulation. So this may cause some special
cases, especially when the energy errors are approaching to the machine precision. Here,
taking the same parameters, the solution errors and energy errors of scheme (3.15) are
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Table 4: Maximum energy errors of scheme (3.13) in t∈ [0,10] with r=2.

∆x ∆t k=2 k=4

1 0.1 9.1290×10−4 1.0836×10−13

1 0.05 5.7804×10−5 1.6076×10−13

0.8 0.08 2.2236×10−3 1.4300×10−13

0.8 0.04 1.4212×10−4 3.3129×10−13

0.4 0.04 5.6847×10−7 3.9968×10−14

0.4 0.02 6.2472×10−8 3.7303×10−14

0.2 0.01 3.8813×10−13 1.1546×10−13

Table 5: The space accuracy test of scheme (3.13) with r=2, k=4 at t=1 (∆t=0.00025).

N L2 error L∞ error

φ 150 2.3899×10−3 1.5809×10−4

300 3.9876×10−9 2.9470×10−10

600 9.9190×10−14 6.9156×10−13

ψ 150 2.3899×10−3 1.5809×10−4

300 3.9876×10−9 2.9470×10−10

600 9.9190×10−14 6.9156×10−13

Table 6: The space accuracy test of scheme (3.15) with r=2, k=4 at t=1 (∆t=0.00025).

N L2 error order L∞ error order

φ 300 5.1920×10−4 - 2.9426×10−4 -

600 7.8994×10−6 6.0398 4.3411×10−6 6.0829

1200 1.1990×10−7 6.0418 6.5889×10−8 6.0419

ψ 300 5.1920×10−4 - 2.9426×10−4 -

600 7.8994×10−6 6.0398 4.3411×10−6 6.0829

1200 1.1990×10−7 6.0418 6.5889×10−8 6.0419

almost the same as those in Fig. 2 and Table 4. Then the convergence orders in space
are considered with ∆t=0.00025. From Table 5 and Table 6, we find that, as ∆x becomes
smaller, the solution errors of scheme (3.13) decrease in an exponential rate and the nu-
merical solution of scheme (3.15) converges in sixth-order in space. However, when the
time grid is very small, under the same space grid, the solution errors of scheme (3.15)
are obviously larger than that of scheme (3.13).

At last, we let r=3. Similarly, Fig. 3 shows that the sixth-order convergent rate in time
of scheme (3.13) with k=6, which still coincides with our theoretical assertions. Table 7
presents maximum energy errors in t∈ [0,10], which could acquire the same conclusion
like the situation of r=2.



1138 M. Song et al. / Commun. Comput. Phys., 25 (2019), pp. 1127-1143

10
−3

10
−2

10
−1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

∆ t

S
ol

ut
io

n 
er

ro
r

 

 

L
2
 errors

L
inf

 errors

Reference line
slope=6

Figure 3: The convergence orders in time of scheme (3.13) with r=3, k=6 at t=1 (∆x=0.2).

Table 7: Maximum energy errors of scheme (3.13) in t∈ [0,10] with r=3.

∆x ∆t k=3 k=6

1 0.1 4.5699×10−6 9.0549×10−14

1 0.05 7.2984×10−8 5.0625×10−14

0.8 0.08 1.5379×10−5 7.1054×10−14

0.8 0.04 2.4682×10−7 1.3323×10−14

0.4 0.04 1.3099×10−8 4.5297×10−14

0.4 0.02 2.1712×10−10 4.0856×10−14

0.2 0.01 1.2257×10−13 1.1902×10−13

4.2 Collision of two solitary waves

In this experiment, various collision behaviors between two solitons described by the
CNLS equations (1.1) are simulated and the initial conditions are taken as

{

φ(x,0)=
√

2a1sech(a1x+b/2)exp(iv1x/4),

ψ(x,0)=
√

2a2sech(a2x−b/2)exp(−iv2x/4),
(4.2)

where −406 x 6 40, b = 20. ai and vi (i = 1,2) are amplitude and velocity parameters,
respectively. Although considering the same initial values, different nonlinear constants
β will impact the evolutions of the collision in different way.

4.2.1 Elastic collision

According to [17], when β = 1, the collision of solitary waves is elastic. In Fig. 4, the
evolution of the collision with a1 = 1.5, a2 = 1, v1 = v2 = 1 and the variation of energy
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Figure 4: The evolution of elastic collision of two solitons obtained from scheme (3.13) with different amplitudes
(a1=1.5, a2=1) (left top). The variation of energy errors in t∈ [0,40] (right top). The waveforms of the CNLS
equations with the initial conditions (4.2) at t=5 (left bottom) and t=25 (right bottom).

errors are depicted. Obviously, after collision, the two solitons still move forward in the
same direction and velocity, meanwhile, the amplitudes remain unchanged. The energy
error of energy-preserving scheme (r=2, k=4) is around 10−14 all the time, but the energy
error of the other scheme (r=2, k=2) can only reach the magnitude of 10−10. Then we let
a1=a2=1, v1=2 v2=1. The collision of solitary waves with different velocities are shown
in Fig. 5. It can be seen that the two solitons also can keep the directions, velocities and
amplitudes as before. Furthermore, the top right picture in Fig. 5 reflects the effectiveness
of energy-preserving scheme, especially when the collision happens. Next, in order to
compare the cost of CPU time, scheme (3.15) is applied to simulate the collision. From
Table 8, we find the HOCM indeed has better computing efficiency and also can preserve
energy very well.

4.2.2 Inelastic collision

For the inelastic collision, we only take r= 2, k= 4, ∆t= 0.01, ∆x= 0.2 in schemes (3.13)
and (3.15), and set a1 = a2 = 1, v1 = v2 = 1 in initial conditions (4.2). Letting β = 2/3,
β=2 and β=3, the corresponding simulations of the inelastic collision are all displayed
in Fig. 6. Obviously, with different β, the evolutions of the waveform are completely



1140 M. Song et al. / Commun. Comput. Phys., 25 (2019), pp. 1127-1143

0 5 10 15 20 25 30 35 40
−16

−15

−14

−13

−12

−11

−10

−9

−8

t

lo
g 10

| H
−

H
0|

 

 

r=2, k=4
r=2, k=2

−40 −30 −20 −10 0 10 20 30 40
0

0.5

1

1.5

t=5

|φ
|+

|ψ
|

−40 −30 −20 −10 0 10 20 30 40
0

0.5

1

1.5

t=25

|φ
|+

|ψ
|

Figure 5: The evolution of elastic collision of two solitons obtained from scheme (3.13) with different velocities
(v1=2, v2 =1) (left top). The variation of energy errors in t∈ [0,40] (right top). The waveforms of the CNLS
equations with the initial conditions (4.2) at t=5 (left bottom) and t=25 (right bottom).

Table 8: Maximum energy errors and CPU times of schemes (3.13) and (3.15) in t∈ [0,40] (∆x=0.8, ∆t=0.04).

HBVM(k,r) HOCM FPM

k r energy error CPU time energy error CPU time

2 1 5.3180×10−13 5.03 6.7857×10−13 6.79

4 2 7.0610×10−14 7.96 1.1546×10−14 10.07

6 3 2.2204×10−14 10.91 5.9952×10−15 12.88

different after the collision: (i) when β = 2/3, the two solitons are trapped with each
other; (ii) when β=2, the two solitons propagates with small shock; (iii) and when β=3,
one new soliton is generated. Here, the simulated results of schemes (3.13) and (3.15)
are almost the same and the energy errors of them also have little difference. Finally, by
comparison of the two kinds of schemes with different β, an inference could be acquired
from Table 9. When the coupling constant becomes larger, scheme (3.15), more obviously,
appears its superiority in computing efficiency. Therefore, scheme (3.15) is more suitable
to be applied for long time simulation.
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Figure 6: The evolution of the inelastic collision of two solitons with β=2/3, β=2 and β=3, and their variations
of energy errors.

Table 9: CPU times in t∈ [0,40] of schemes (3.13) and (3.15) with r=2, k=4 (∆x=0.2, ∆t=0.01).

β= 2
3 β=1 β=2 β=3

FPM 113.56 112.96 145.48 171.43

HOCM 105.00 106.84 109.05 112.18

5 Conclusion

In this paper, we propose two kinds of energy-preserving schemes, based on the HBVMs,
the FPM and the HOCM, to solve the CNLS equations. It can be theoretically verified
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that schemes (3.13) and (3.15) have 2r order convergent rate in time and could preserve
corresponding discrete energy exactly for k≥2r. Numerical results fully indicate that both
of the schemes are effective in numerical simulation. By comparison with the situation
of k= r, the energy-preserving characters of schemes (3.13) and (3.15) with k=2r can be
evidently confirmed. Moreover, the schemes using the FPM or the HOCM have their
own advantages. It can be seen that the numerical accuracy of scheme (3.13) is higher,
whereas the computational efficiency of scheme (3.15) performs better.
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