Augmented Lagrangian Preconditioners for Oseen–Frank models in cholesteric liquid crystals

Jingmin Xia*, Patrick E. Farrell, Florian Wechsung

Mathematical Institute, University of Oxford

Introduction

Let $\Omega \subset \mathbb{R}^d$ (d = 2, 3) be an open, bounded domain with Lipschitz boundary $\partial \Omega$. Denote K_1, K_2, K_3, q_0 as the splay, twist, bend constants and the preferred pitch for cholesteric liquid crystals (LC), respectively.

(1) Oseen–Frank models (seek the **director**
$$n \in \mathbb{R}^d$$
):

$$\begin{array}{l} \min_{\mathbf{n}\in\mathrm{H}^1(\Omega)} \quad J(\mathbf{n}) = \int_{\Omega} \frac{K_1}{2} |\nabla \cdot \mathbf{n}|^2 + \frac{K_2}{2} |\mathbf{n} \cdot (\nabla \times \mathbf{n}) + q_0|^2 \\ \quad + \frac{K_3}{2} |\mathbf{n} \times (\nabla \times \mathbf{n})|^2 \mathrm{d}x,
\end{array}$$
subject to $\mathbf{n} = \mathbf{n} = 1$ on in Ω and $\mathbf{n} = \mathbf{n} \in H^{1/2}(2\Omega)$ on 2Ω

(3) The matrix form of the k-th Newton iteration (by Newton linearization + discretization):

$$\mathcal{A}egin{bmatrix} u\p \end{pmatrix}\coloneqq egin{bmatrix} A+\gamma B_* \ B^T\ B \ 0\end{bmatrix}egin{bmatrix} u\p \end{pmatrix} = egin{bmatrix} f\p \end{pmatrix},$$
 where $(u,p)\in V_h imes W_h\subset \mathrm{H}^1_0(\Omega) imes L^2(\Omega)$ and

Subject to $n \cdot n = 1$ a.e. In \mathfrak{U} and $n = \mathfrak{g} \in H^{-1/2}(\mathfrak{O}\mathfrak{U})$ on $\mathfrak{O}\mathfrak{U}$.

The augmented problem using Augmented Lagrangian methods (AL):

 $\mathcal{L}(\mathrm{n},\lambda)=J(\mathrm{n})+\langle\lambda,n\cdot n-1
angle_0+rac{\gamma}{2}\langle\mathrm{n}\cdot\mathrm{n}-1,\mathrm{n}\cdot\mathrm{n}-1
angle_0.$

 $B_* \sim 4\langle \mathbf{n}_k \cdot \delta \mathbf{n}, \mathbf{n}_k \cdot \delta \lambda \rangle_0 + 2\langle \mathbf{n}_k \cdot \mathbf{n}_k - 1, \delta \mathbf{n} \cdot \delta \lambda \rangle_0.$

(4) Schur complement reduction:

$$\mathcal{A} \Rightarrow egin{bmatrix} A+\gamma B_* \ B^T \ 0 \ S \end{bmatrix}$$

with the Schur complement $S = -B(A + \gamma B_*)^{-1}B^T = -BA_{\gamma}^{-1}B^T$.

Dur **GOAL** is to design a preconditioner
$$\mathcal{P}^{-1} = \begin{vmatrix} I - \tilde{A}_{\gamma}^{-1} B^T \\ 0 & I \end{vmatrix} \begin{vmatrix} \tilde{A}_{\gamma}^{-1} & 0 \\ 0 & \tilde{S}^{-1} \end{vmatrix} \begin{vmatrix} I & 0 \\ -B\tilde{A}_{\gamma}^{-1} & I \end{vmatrix} \approx \mathcal{A}^{-1}.$$

Treat S^{-1} : Schur complement approximation

Motivated by [2], we first have

(2)

 $S^{-1}pprox \hat{S}^{-1} = -(BA^{-1}B^T)^{-1} - \gamma M_\lambda^{-1}.$

• To approximate the $BA^{-1}B^T$ part, we now prove:

Theorem: For equal-constant $(K = K_1 = K_2 = K_2)$ K_3) nematic ($q_0 = 0$) LC problems, the Schur complement matrix $BA^{-1}B^{T}$ arising from the Newtonlinearized system is spectrally equivalent to the Lagrange multiplier mass matrix M_{λ} .

Treat \tilde{A}_{γ}^{-1} : Robust multigrid methods

• Kernel-capturing condition [3] (for the decomposition $V_h = \sum_{i=1}^M V_i$):

$$\mathcal{N}_h = \sum_{i=1}^M (V_i \cap \mathcal{N}_h).$$
 (*

Here, the kernel is $\mathcal{N}_h = \{\mathbf{u}_h \in V_h : \mathbf{n}_k \cdot \mathbf{u}_h = 0 \text{ a.e.}\}.$

Examples of relaxation satisfying (1) (black dots represent degrees of freedom (dofs)):

Thus, our approximation to
$$S^{-1}$$
 is
 $ilde{S}^{-1} = -(1+\gamma)M_{\lambda}^{-1}.$

(Star patch in \mathbb{P}_2)

We denote the solver by **ALMG-PBJ** when choosing the point-block patch relaxation in the multigrid (MG) algorithm.

Result 1: Parameter robustness 3.1

and *h*-robustness

		γ				
#refs	#dofs	10^{4}	10^5	10^{6}	10^{7}	
1	19,933	4.00(4)	3.75(4)	3.25(4)	3.25(4)	
2	78,810	4.80(5)	3.75(4)	3.25(4)	3.25(4)	
3	313,408	9.40(5)	3.60(5)	3.25(4)	3.25(4)	
4	1,249,980	18.00(5)	6.00(5)	3.50(4)	3.00(4)	
5	4,992,628	32.80(5)	11.20(5)	4.75(4)	3.00(4)	
6	19,955,940	58.60(5)	21.40(5)	7.60(5)	3.50(4)	

Table 1: The average number of linear iterations (the number of nonlinear iterations).

• K_2 - and q_0 -robustness

3.2 Result 2: Efficiency

ALMG-PBJ is about three times faster than MGVanka [1].

	Runtime (in minutes) of ALMG-PBJ vs. MGVanka								
#refs	1	2	3	4	5	6			
#dofs	19,933	78,810	313,408	1,249,980	4,992,268	19,955,940			
MGVanka	0.02	0.05	0.15	0.61	2.30	10.98			
ALMG-PBJ	0.02	0.03	0.05	0.14	0.56	3.72			

Result 3: Improvement of constraints 3.3

(K_2 -continuation) $(q_0$ -continuation) Figure 1: Plot of the average number of linear iterations w.r.t. K_2 and q_0 with step size 0.1.

Conclusions 4

- Our proposed AL-based preconditioner is robust and efficient.
 - ▷ AL can not only help control the Schur complement, but also improve the discrete constraint as $\gamma \to \infty$.
 - Multigrid algorithms with patchwise (star or point-block) relaxations solve the top-left block robustly.

- used;
- \blacktriangleright the Dirichlet boundary data g is constant.

Remarks: Our test model in this poster is the cholesteric LC model in an ellipse, see [1]; for further details about this poster, see [4].

References 5.

- [1] D. B. Emerson, P. E. Farrell, J. H. Adler, S. P. MacLachlan and T. J. Atherton, Computing equilibrium states of cholesteric liquid crystals in elliptical channels with deflation algorithms, Liquid Crystals, 45(3), 2018, 341-350.
- [2] P. E. Farrell, L. Mitchell and F. Wechsung, An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier-Stokes equations at high Reynolds number, SIAM Journal on Scientific Computing, 41(5), 2019, A3073–A3096.
- [3] J. Schöberl, *Multigrid methods for a parameter dependent problem in primal variables*, Numerische Mathematik, 84(1), 1999, 97-119.
- [4] J. Xia, P. E. Farrell and F. Wechsung. Augmented Lagrangian preconditioners for Oseen–Frank models in cholesteric liquid crystals, in preparation.

jingmin.xia@maths.ox.ac.uk *Email:

https://www.maths.ox.ac.uk/people/jingmin.xia